Lo Último

Si eres Autor prueba la opción Entrada Nueva en la pestaña Entradas. Utiliza Chrome para ver el blog completo.

Date de alta como Autor en Universo Mágico Público

Comunidades para disfrutar de la Astronomía: Universo Mágico - Astronomy Lab - Space Roads

Colecciones de Google Plus para disfrutar del Universo: Astronomía en fotos - Astronomía en vídeo

Jets of Material Ejected From a Young Star

HH 32 is an excellent example of a "Herbig-Haro object," which is formed when young stars eject jets of material back into interstellar space. This object, about 1,000 light years from Earth, is somewhat older than Hubble's variable nebula, and the wind from the bright central star has already cleared much of the dust out of the central region, thus exposing the star to direct view. Many young stars, like the central object in HH 32, are surrounded by disks of gas and dust that form as additional material is attracted gravitationally from the surrounding nebula. Material in the disk gradually spirals in toward the star and eventually some of it accretes onto the star, increasing its mass. A fraction of the gas, however, is ejected perpendicularly to the disk at speeds near 200 miles per second, and forms two oppositely directed jets. These jets plow into the surrounding nebula, producing strong shock waves that heat the gas and cause it to glow in the light of hydrogen atoms (green) and sulfur ions (blue), several other atoms and ions, and sometimes radiation from the exciting star that is reflected by the surrounding gas (red). This glow is called a Herbig-Haro object, in honor of astronomers George Herbig and Guillermo Haro, who did much of the early work in this area in the 1950's.

The jet on the top side, whose furthest extent is about 0.2 light-year from the star, is pointed more nearly in our direction, while the opposite jet on the bottom lies on the far side of the star and is fainter either because it is partially obscured by dust surrounding the star or because there is much less material in front of the star.

Credit: NASA and The Hubble Heritage Team (AURA/STScI)

No hay comentarios:

Publicar un comentario en la entrada

Comentar es un incentivo para el Autor