Lo Último

Si eres Autor prueba la opción Entrada Nueva en la pestaña Entradas. Utiliza Chrome para ver el blog completo.

Date de alta como Autor en Universo Mágico Público

Comunidades para disfrutar de la Astronomía: Universo Mágico - Astronomy Lab - Space Roads

Colecciones de Google Plus para disfrutar del Universo: Astronomía en fotos - Astronomía en vídeo

The Capodimonte Deep Field



With the comparatively few large telescopes available in the world, it is not possible to study the Universe to its outmost limits in all directions. Instead, astronomers try to obtain the most detailed information possible in selected viewing directions, assuming that what they find there is representative for the Universe as a whole. This is the philosophy behind the so-called "deep-field" projects that subject small areas of the sky to intensive observations with different telescopes and methods. The astronomers determine the properties of the objects seen, as well as their distances and are then able to obtain a map of the space within the corresponding cone-of-view (the "pencil beam"). Recent, successful examples of this technique are the "Hubble Deep Field" and the "Chandra Deep Field" (eso0106).

In this context, the Capodimonte Deep Field (OACDF) is a pilot research project, now underway at the Osservatorio Astronomico di Capodimonte (OAC) in Napoli (Italy). It is a multi-colour imaging survey performed with the Wide Field Imager (WFI), a 67-million pixel (8k x 8k) digital camera that is installed at the 2.2-m MPG/ESO Telescope at ESO's La Silla Observatory in Chile. The scientific goal of the OACDF is to provide an important database for subsequent extragalactic, galactic and planetary studies. It will allow the astronomers at OAC - who are involved in the VLT Survey Telescope (VST) project - to gain insight into the processing (and use) of the large data flow from a camera similar to, but four times smaller than the OmegaCam wide-field camera that will be installed at the VST.

The field selection for the OACDF was based on the following criteria:

* There must be no stars brighter than about 9th magnitude in the field, in order to avoid saturation of the CCD detector and effects from straylight in the telescope and camera. No Solar System planets should be near the field during the observations;
* It must be located far from the Milky Way plane (at high galactic latitude) in order to reduce the number of galactic stars seen in this direction;
* It must be located in the southern sky in order to optimize observing conditions (in particular, the altitude of the field above the horizon), as seen from the La Silla and Paranal sites;
* There should be little interstellar material in this direction that may obscure the view towards the distant Universe;
* Observations in this field should have been made with the Hubble Space Telescope (HST) that may serve for comparison and calibration purposes.

Based on these criteria, the astronomers selected a field measuring about 1 x 1 deg 2 in the southern constellation of Corvus (The Raven). This is now known as the Capodimonte Deep Field (OACDF). The above photo (ESO Press Photo eso0116a) covers one-quarter of the full field (Subfield No. 2 - OACDF2) - some of the objects seen in this area are shown below in more detail. More than 35,000 objects have been found in this area; the faintest are nearly 100 million fainter than what can be perceived with the unaided eye in the dark sky.


Credit:
ESO