Lo Último

Si eres Autor prueba la opción Entrada Nueva en la pestaña Entradas. Utiliza Chrome para ver el blog completo.

Date de alta como Autor en Universo Mágico Público

Comunidades para disfrutar de la Astronomía: Universo Mágico - Astronomy Lab - Space Roads

Colecciones de Google Plus para disfrutar del Universo: Astronomía en fotos - Astronomía en vídeo

NGC 6791

Imagine having three clocks in your house, each chiming at a different time. Astronomers have found the equivalent of three out-of-sync "clocks" in the ancient open star cluster NGC 6791. The dilemma may fundamentally challenge the way astronomers estimate cluster ages, researchers said. Using Hubble Space Telescope to study the dimmest stars in the cluster, astronomers uncovered three different age groups. Two of the populations are burned-out stars called white dwarfs. One group of these low-wattage stellar remnants appears to be 6 billion years old, another appears to be 4 billion years old. The ages are out of sync with those of the cluster's normal stars, which are 8 billion years old. "The age discrepancy is a problem because stars in an open cluster should be the same age. They form at the same time within a large cloud of interstellar dust and gas. So we were really puzzled about what was going on," explained astronomer Luigi Bedin, who works at the Space Telescope Science Institute in Baltimore, Md.

Ivan King of the University of Washington and leader of the Hubble study said: "This finding means that there is something about white dwarf evolution that we don't understand." After extensive analysis, members of the research team realized how the two groups of white dwarfs can look different and yet have the same age. It is possible that the younger-looking group consists of the same type of stars, but the stars are paired off in binary-star systems, where two stars orbit each other. Because of the cluster's great distance, astronomers see the paired stars as a brighter single star. "It is their brightness that makes them look younger," said team member Maurizio Salaris of Liverpool John Moores University in the United Kingdom. Binary systems are also a significant fraction of the normal stellar population in NGC 6791, and are also observed in many other clusters. This would be the first time they have been found in a white-dwarf population. "Our demonstration that binaries are the cause of the anomaly is an elegant resolution of a seemingly inexplicable enigma," said team member Giampaolo Piotto the University of Padova in Italy.

Bedin and his colleagues are relieved that they now have only two ages to reconcile: an 8-billion-year age of the normal stellar population and a 6-billion-year age for the white dwarfs. All that is needed is a process that slows down white-dwarf evolution, the researchers said. Hubble's Advanced Camera for Surveys analyzed the cooling rate of the entire population of white dwarfs in NGC 6791, from brightest to dimmest. Most star clusters are too far away and the white dwarfs are too faint to be seen by ground-based telescopes, but Hubble's powerful vision sees many of them. White dwarfs are the smoldering embers of Sun-like stars that no longer generate nuclear energy and have burned out. Their hot remaining cores radiate heat for billions of years as they slowly fade into darkness. Astronomers have used white dwarfs as a reliable measure of the ages of star clusters, because they are the relics of the first cluster stars that exhausted their nuclear fuel.

Credit: NASA, ESA, and L. Bedin (STScI)

No hay comentarios:

Publicar un comentario en la entrada

Comentar es un incentivo para el Autor