💫Navegación segura con cifrado SSL. Con la tecla Ctrl presionada, pulsa el signo menos para reducir el tamaño del blog.

💫Si eres Autor prueba la opción Nueva Entrada. Utiliza Chrome para ver el blog completo.

💫Los aficionados ya pueden escribir sobre astronomía. Date de alta como Autor en Universo Mágico Público.

💫Comunidades de Astronomía en Google Plus: Universo Mágico - Astronomy Lab - Space Roads - Space World - Astronomy Station

💫Grupos de Astronomía en en Facebook: Astronomy & Space Exploration - Universo Mágico - Big Bang


💫Galaxy Cluster Abell 1689

Hubble Space Telescope has uncovered the largest known population of globular star clusters, an estimated 160,000, swarming like bees inside the crowded core of the giant grouping of galaxies Abell 1689. By comparison, our Milky Way galaxy hosts about 150 such clusters. Studying globular clusters is critical to understanding the early, intense star-forming episodes that marked galaxy formation. The Hubble observations also confirm that these compact stellar groupings can be used as reliable tracers of the amount of dark matter locked away in immense galaxy clusters. Globular clusters, dense bunches of hundreds of thousands of stars, are the homesteaders of galaxies, containing some of the oldest surviving stars in the universe. Almost 95 percent of globular cluster formation occurred within the first 1 billion or 2 billion years after our universe was born in the big bang 13.8 billion years ago.



A team of astronomers, led by John Blakeslee of the NRC Herzberg Astrophysics Program at the Dominion Astrophysical Observatory in Victoria, B.C., used Hubble's sensitivity and sharpness to discover a bounty of these stellar fossils, which is roughly twice as large as any other population found in previous globular cluster surveys. The Hubble observations also win the distance record for the farthest such systems ever studied, at 2.25 billion light-years away.

The research team found that the globular clusters are intimately intertwined with dark matter. "In our study of Abell 1689, we show how the relationship between globular clusters and dark matter depends on the distance from the galaxy cluster's center," explained team member Karla Alamo-Martinez of the Center for Radio Astronomy and Astrophysics of the National Autonomous University of Mexico in Morelia. "In other words, if you know how many globular clusters are within a certain distance, we can give you an estimate of the amount of dark matter."


Credit: NASA, ESA, J. Blakeslee (NRC Herzberg Astrophysics Program, Dominion Astrophysical Observatory), and K. Alamo-Martinez (National Autonomous University of Mexico)

Publicar un comentario

Comentar es un incentivo para el Autor